Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Zmień bibliotekę
Tytuł pozycji:

Changing aetiology of paediatric septic arthritis.

Tytuł :
Changing aetiology of paediatric septic arthritis.
Autorzy :
Yagupsky P; Clinical Microbiology Laboratory, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
Pokaż więcej
Źródło :
Journal of paediatrics and child health [J Paediatr Child Health] 2021 Jul 14. Date of Electronic Publication: 2021 Jul 14.
Publication Model :
Ahead of Print
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Original Publication: Melbourne ; Boston : Blackwell Scientific Publications, c1990-
References :
Pääkkönen M, Peltola H. Simplifying the treatment of acute bacterial bone and joint infections in children. Expert Rev. Anti Infect. Ther. 2011; 9: 1125-31.
Nelson JD, Wayne C, Koontz WC. Septic arthritis in infants and children: A review of 117 cases. Pediatrics 1966; 38: 966-71.
Rotbart HA, Glode MP. Haemophilus influenzae type b septic arthritis in children: Report of 23 cases. Pediatrics 1985; 75: 254-9.
Trujillo M, Nelson JD. Suppurative and reactive arthritis in children. Semin. Pediatr. Infect. Dis. 1997; 8: 242-9.
Welkon CJ, Long SS, Fisher MC, Alburger PD. Pyogenic arthritis in infants and children: A review of 95 cases. Pediatr. Infect. Dis. 1986; 5: 669-76.
Spyridakis E, Gerber JS, Schriver E et al. Clinical features and outcomes of children with culture-negative septic arthritis. J. Pediatr. Infect. Dis. Soc. 2019; 8: 228-34.
Dubost JJ. Septic arthritis with no organism: A dilemma. Joint Bone Spine 2006; 73: 341-3.
Lyon RM, Evanich JD. Culture-negative septic arthritis in children. J. Pediatr. Orthop. 1999; 19: 655-9.
Chang WS, Chiu NC, Chi H, Li WC, Huang FY. Comparison of the characteristics of culture-negative versus culture-positive septic arthritis in children. J. Microbiol. Immunol. Infect. 2005; 38: 189-93.
Pääkkönen M, Kallio MJT, Kallio PE, Peltola H. Significance of negative cultures in the treatment of acute hematogenous bone and joint infections in children. J. Pediatr. Infect. Dis. Soc. 2013; 2: 119-25.
Morrey BF, Bianco AJ, Rhodes KH. Septic arthritis in children. Orthop. Clin. North Am. 1975; 6: 923-34.
Kocher MS, Zurakowski D, Kasser JR. Differentiating between septic arthritis and transient synovitis of the hip in children: An evidence-based clinical prediction algorithm. J. Bone Joint Surg. Am. 1999; 81: 1662-70.
Malleson PN. Management of childhood arthritis. Part 1: Acute arthritis. Arch. Dis. Child 1997; 76: 460-2.
Howard AW, Viskontas D, Sabbagh C. Reduction in osteomyelitis and septic arthritis related to Haemophilus influenzae type b vaccination. J. Pediatr. Orthop. 1999; 19: 705-9.
Olarte L, RomeromJ BW et al. Osteoarticular inections caused by Streptococcus pneumoniae in children in the post-pneumococcal conjugate vaccine era. Pediatr. Infect. Dis. J. 2017; 36: 1201-4.
Yagupsky P, Dagan R, Howard CW, Einhorn M, Kassis I, Simu A. High prevalence of Kingella kingae in joint fluid from children with septic arthritis revealed by the BACTEC blood culture system. J. Clin. Microbiol. 1992; 30: 1278-81.
Rosey AL, Abachin E, Quesnes G et al. Development of a broad-range 16S rDNA real-time PCR for the diagnosis of septic arthritis in children. J. Microbiol. Methods 2007; 68: 88-93.
Moumile K, Merckx J, Glorion C, Berche P, Ferroni A. Osteoarticular infections caused by Kingella kingae in children; contribution of polymerase chain reaction to the microbiologic diagnosis. Pediatr. Infect. Dis. J. 2003; 22: 837-9.
Lehours P, Freydière AM, Richer O et al. The rtxA toxin gene of Kingella kingae: A pertinent target for molecular diagnosis of osteoarticular infections. J. Clin. Microbiol. 2011; 49: 1245-50.
Chometon S, Benito Y, Chaker M et al. Specific real-time polymerase chain reaction places Kingella kingae as the most common cause of osteoarticular infections in young children. Pediatr. Infect. Dis. J. 2007; 26: 377-81.
El Houmami N, Durand GA, Bzdrenga J et al. A new highly sensitive and specific real-time PCR assay targeting the malate dehydrogenase gene of Kingella kingae and application to 201 pediatric clinical specimens. J. Clin. Microbiol. 2018; 56: e00505-18.
Ceroni D, Dubois-Ferrière V, Cherkaoui A et al. Detection of Kingella kingae osteoarticular infections in children by oropharyngeal swab PCR. Pediatrics 2013; 131: e230-5.
Stähelin J, Goledenberger D, Gnehm HE, Altwegg M. Polymerase chain reaction diagnosis of Kingella kingae arthritis in a young child. Clin. Infect. Dis. 1998; 27: 1328-9.
Yagupsky P. Kingella kingae: Carriage, transmission, and disease. Clin. Microbiol. Rev. 2015; 28: 54-79.
Basmaci R, Ilharreborde B, Bidet P et al. Isolation of Kingella kingae in the oropharynx during K. kingae arthritis in children. Clin. Microbiol. Infect. 2012; 18: E134-6.
Yagupsky P, Porat N, Pinco E. Pharyngeal colonization by Kingella kingae in children with invasive disease. Pediatr. Infect. Dis. J. 2009; 28: 155-7.
Wong M, Williams N, Cooper C. Systematic review of Kingella kingae musculoskeletal infection in children: Epidemiology, impact and management strategies. Pediatr. Health Med. Therapeut. 2020; 11: 73-84.
Juchler C, Spyropoulou V, Wagner N et al. The contemporary bacteriologic epidemiology of osteoarticular infections in children in Switzerland. J. Pediatr. 2018; 194: 190-6.
Ceroni D, Kampouroglou G, Anderson Della Lana R, Salvo D. Osteoarticular infections in young children: What has changed over the last years? Swiss Med. Wkly 2014; 144: w13971.
Porsch EA, Starr KF, Yagupsky P, St Geme JW 3rd. The type a and type b polysaccharide capsules predominate in an international collection of invasive Kingella kingae isolates. mSphere 2017; 2: e00060-17.
Villani MC, Hamilton EC, Klosterman MM, Jo C, Kang LH, Copley LAB. Primary septic arthritis among children 6 to 48 months of age: Implications for PCR acquisition and empiric antimicrobial selection. J. Pediatr. Orthop. 2021; 41: 190-6.
Gravel J, Ceroni D, Lacroix L et al. Association between oropharyngeal carriage of Kingella kingae and osteoarticular infection in young children: A case-control study. CMAJ 2017; 189: E1107-11.
Gouveia C, Duarte M, Norte S et al. Kingella kingae displaced S. aureus as the most common cause of acute septic arthritis in children of all ages. Pediatr. Infect. Dis. J. 2021; 40: 623-7.
Yagupsky P, Dubnov-Raz G, Gené A, Ephros M, Israeli-Spanish Kingella kingae Research Group. Differentiating Kingella kingae septic arthritis of the hip from transient synovitis in young children. J. Pediatr. 2014; 165: 985-9.e1.
Khattak M, Vellathussery Chakkalakumbil S, Stevenson RA et al. Kingella kingae septic arthritis. Maintaining a high level of suspicion in children with atypical presentation. Bone Joint J. 2021; 103-B: 584-8.
Coulin B, Demarco G, Spyropoulou V et al. Osteoarticular infection in children. An update on the epidemiological, clinical, and biological features of Kingella kingae. Bone Joint J. 2021; 103-B: 578-83.
Samara E, Spyropoulou V, Tabard-Fougère A et al. Kingella kingae and osteoarticular infections. Pediatrics 2019; 144: e20191509.
Ceroni D, Cherkaoui A, Combescure C, François P, Kaelin A, Schrenzel J. Differentiating osteoarticular infections caused by Kingella kingae from those due to typical pathogens in young children. Pediatr. Infect. Dis. J. 2011; 30: 906-9.
Awwad E, Tolley M, Antoniou G, Williams N. Clinical presentations of Kingella kingae musculoskeletal infections in south Australian children. J. Paediatr. Child Health 2021 https://doi.org/10.1111/jpc.15422.
Dubnov-Raz G, Ephros M, Garty BZ et al. Invasive pediatric Kingella kingae infections: A nationwide collaborative study. Pediatr. Infect. Dis. J. 2010; 29: 639-43.
Matuschek E, Åhman J, Kahlmeter G, Yagupsky P. Antimicrobial susceptibility testing of Kingella kingae with broth microdilution and disk diffusion using EUCAST recommended media. Clin. Microbiol. Infect. 2018; 24: 396-401.
Yagupsky P, Press J. Unsuspected Kingella kingae infections in afebrile children with mild skeletal symptoms: The importance of blood cultures. Eur. J. Pediatr. 2004; 163: 563-4.
Ivy MI, Thoendel MJ, Jeraldo PR et al. Direct detection and identification of prosthetic joint infection pathogens in synovial fluid by metagenomic shotgun sequencing. J. Clin. Microbiol. 2018; 56: e00402-18.
Sarmiento A, Del Valle PA, Laufer PM et al. Rapid, noninvasive detection of Kingella kingae pediatric vertebral infections using a microbial cell-free DNA sequencing test for pathogen identification. J. Pediatr. Infect. Dis. Soc. 2021; 10: S10.
Entry Date(s) :
Date Created: 20210714 Latest Revision: 20210714
Update Code :
20210914
DOI :
10.1111/jpc.15654
PMID :
34259365
Czasopismo naukowe
The management of septic arthritis in children requires the prompt administration of antibiotic therapy and the identification of the causative pathogen. In the past, Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae and Haemophilus influenzae type b were considered the main causative agents of the disease, but a substantial fraction of presumptive joint infections remained unconfirmed by conventional bacteriologic cultures. In the last two decades, our knowledge of the aetiology of paediatric infectious arthritis has substantially changed as the result of the implementation of vaccination programmes against H. influenzae type b and pneumococci, and by the use of improved detection methods. In 1988, the inoculation of synovial fluid aspirates into blood culture vials revealed that Kingella kingae, a commensal member of the oropharyngeal microbiota, was the prime aetiology of skeletal system infections in children aged 6-48 months. The clinical presentation of K. kingae arthritis is subtle, and the disease is frequently missed by classic clinical and laboratory diagnostic criteria. Many children are afebrile, the acute phase reactants levels and the white blood cell counts in the blood and synovial fluid specimens are frequently normal, requiring a high clinical acumen. Increasing use of sensitive molecular methods in recent years, and particularly nucleic acid amplification tests that target K. kingae-specific genes, has further improved the detection of this elusive pathogen, demonstrated that it is responsible for 30-93% of all cases of septic arthritis below 4 years of age and reduced the fraction of culture-negative infections.
(© 2021 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies